


Page 2 Wednesday, October 3, 2018 4:30 PM (2) Numerically: If the D.E. is not analytically solvable Euler's Method (the intuitive approach) vector Field: It is a field of vectors that completly defines a function. example in 1D: ·//2 γ_{2} γ_{2} γ_{2} γ_{2} γ_{3} $f: \mathbb{R} \longrightarrow \mathbb{R} : f(x) = -2x$ 2 -2 example in 20: $\xrightarrow{x_{i}} x_{i}$ $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $f(x_1, x_2) = \begin{cases} x_1^2 & x_2^2 \\ x_2 \end{cases}$ Question: How is all of this related to solving D.E.?

Page 4
Wednesder, October 3.2028 439 PM
Goal: Build a mathematical framework for the inituition.
to ti t2.....ln ton
to ti t2.....ln ton
to ti t2.....ln ton
to ti t2.....ln ton

$$X_n \stackrel{\sim}{\rightarrow} x(t_n)$$
 $x(t_n) : exact solution, $x_n : approx.$
Algorithms: Given x_n is how to find x_{mi} ?
 $x_{n+1} = x_n + push of vector (@x_n)$
II
 $X_{n+1} = x_n + push of vector (@x_n)$
II
 $X_{n+1} = x_n + push of vector (@x_n)$
II
 $X_{n+1} = x_n + Ot f(x_n)$
 \vdots
 $(1) x_n = x_n + Ot f(x_n)$
 $(2) x_2 = x_i + Ot f(x_n)$
 $(n) x_n = x_{n-1} + Ot f(x_{n-1})$
 $(n+1) x_{n+1} = x_n + Ot f(x_n)$
 $\vdots$$

		Page 5								
		Wednesday, (October 3, 201	.8 4:41 PN	1					
6	. 0		1. 1	(Ih a	4	tin l)		
	wer's	riet	noa	(the l	nathem	ance	appr	oacn/		
	0	(100)			tə	ti t	2	la l	n <i>u -</i> · -	,
	'X = •	f(x) ;	'X (О)	= X.	+	• • •		<u> </u>		2
	1				Ъ	i Di		DT.		
								to)= to +	n Dt
				16	en in a	dire	k			-
				K	ey ing	for	Fulen	's Me	thod	
	¥									
		x (tn) =	lin	xlt	$t_n + \Delta t$	-xtt	<u>n)</u>			. ,2
		•••	D/ -•	• —	6	Ł		F	> xle	$(= t^2)$
			•		^	x(t)			, Å	:= 2t
		(t)=t								
	7(ちこし								
	X	(t) <u>-</u> 1							<i>t</i>	
							Ł	n tar.		
							1	St.		
		•						De		
		*	(t)= f	(x)						
			11						P	nch .
	Otn	3	$(l_n + D_n)$:) - x(t.) = f((x(ta))				
			L)t						
			X	$\gamma_n =$	f(x_))	Xno	$= \chi_n +$	Stflx _n	
			<u></u>							7
			O	•						

Page 6 Wednesday, October 3, 2018 4:43 PM Modified Euler Melhod: trial step $(\tilde{\chi}_{n+1} = \chi_n + Dtf(\chi_n))$ real step: $\chi_{n+1} = \chi_n + \frac{1}{2} [f(\chi_n) + f(\tilde{\chi}_{n+1})] Dt$ Runge-Kutta Method: $X_{n+1} = X_n + \frac{1}{4} (K_1 + 2K_2 + 2K_3 + K_4)$ where $k_{i} = f(x_{n}) \Delta t$ $k_{2} = f(x_{n} + \frac{1}{2}k_{i}) \Delta t$ $k_{3} = f(x_{n} + \frac{1}{2}k_{z}) \Delta t$ $k_{4} = f(x_{n} + k_{3}) \Delta t$

Page 6 Wednesday, October 3, 2018 4:44 PM Error of approximation - approximated so lution for the numerical method $E_n := \left[\begin{array}{c} \chi(t_n) - \chi_n \right] \\ \chi_n \\ \chi$ En & At Euler's method $E_n \propto \Delta t^2$ $E_n \propto \Delta t''$ Modified Euler Range - Kutta (7th rider) En E = Method 1 Mahod 2 = M.E. E. At. RK **>** H